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To maintain intensity measurements on a fixed scale an identical and constant spectral distribution 
must be integrated in either the (o or 20 scan. Both the vertical and horizontal dimensions of the 
detector aperture are critical for either scan. With the mechanical arrangements currently in use for 
upper level o~ scans both aperttwe dimensions are dependent on the mosaic spread of the crystal 
as well as the spectral dispersion. The optimum type of scan for a given set of conditions is that  
which yields the true integrated intensity plus the least amount of thermal diffuse scattering. 
This will be the scan which defines the smallest illuminated volume in reciprocal space. When other 
factors, such as anomalous dispersion, are equal, a long characteristic wavelength is desirable in 
that  it will give rise to a smaller illuminated volume at a given point, in reciprocal space than will 
a short wavelength. 

I n t r o d u c t i o n  

The definition of an in tegra ted intensi ty  depends on 
the  exper imental  technique. The technique under  con- 
siderat ion in this paper  is tha t  of the small  crystal  
ba thed  in an incident  beam of X-rays  in such a 
fashion t h a t  every point  on the  crystal  can see every 
point  on the  X - r a y  source. Under  these conditions 
the  in tegra ted  in tensi ty  (on a relat ive scale) is defined 
as a measurement  of all the  Bragg reflected radia t ion  
t h a t  is produced when a crystal  is ro ta ted  sufficiently 
through the reflecting position, a t  a uniform angular  
velocity, for all the mosaic blocks in all par t s  of the 
crystal  to have the oppor tuni ty  to diffract  some 
specified spectral  dis t r ibut ion from all par ts  of the 
source. By  this definition an integrated intensi ty  is 
dependent  on the size of the crystal  in contrast  to the 
classical technique where a large f lat  crystal  intercepts 
the entire X- ray  beam. The spectral  dis t r ibut ion must  
be specified because if a series of measurements  are 
to be on a common scale the same incident energy 
spect rum must  be used for all measurements .  

The requirements  for valid integrat ions under  the 
above definition have been considered in great  detail  
by  Furnas  (1957). A more elegant  t r e a tmen t  in terms 
of convolutions has been given by  Alexander  & Smith 
(1962). In  both cases the emphasis  was on the Eulerian- 
cradle geometry  of the single-crystal orienter or three- 
circle g0ni0meter. Alexander & Smith clearly demon. 
s t ra ted  t h a t  any  method which presumes an equiv- 
alence of peak height and peak area has an extremely 
l imited range of val idi ty.  Only two ro ta t ing  crystal  
techniques will be considered here. The 20 scan, or 
moving crys ta l -moving  counter  scan, where the detec- 
tor  and crystal  table  have a 2:1 angular  coupling, is 
confined to the  zero level and  consequently is asso- 
ciated with Euler ian-cradle  geometry.  The o9 scan, or 
moving crys ta l - s ta t ionary  counter scan, is used for 
both  zero and upper  levels and is commonly asso- 
ciated with equi-inclination Weissenberg geometry.  

The intent  of the present  paper  is to indicate cer- 
tain similarities and differences which exist between 
the o9 and 20 scans which have either not  been em- 
phasized or not been considered in the  previous t rea t -  
ments.  

20  s c a n s  a n d  z e r o  l e v e l  co s c a n s  

Fig. 1 is a geometric representat ion in reciprocal space 
of the physical  interact ion between X-rays  and mat-  
ter  t ha t  occurs in the  course of ro ta t ing  a crystal  
through a reflection oll the zero level. The nota t ion is 
t ha t  used by  Furnas  (1957)../] 0 is the spectral distr ibu- 
tion or wavelength band to be included in the measure- 
ment ,  expressed as an increment of Bragg angle. S is 
the source width expressed as the angle subtended at  
the crystal .  C is the crystal  d iameter  expressed as the 
angle subtended at  the source. M is the angular  width 
of the mosaic spread. The origin of reciprocal space 
is a t  O. The crystal  rota t ion axis is normal to the plane 
of the figure. A reciprocal latt ice point P and a vector  
OP lie in the plane of the figure. The short wavelength 
l i m i t  of the spectral dis tr ibut ion is defined by a sphere 
of radius ~.11 centered a t  the point S1. The long wave- 
length l imit is defined by a sphere of radius /~71 cen- 
tered a t  the point  S~. The incident beam vectors form 
a sheaf with an angular  width C + S  and converge at 
O. The directions of these vectors range from (C + S)/2 
to -(C+S)/2. The points ~1 and $2 are spread out 
into arcs and each point  on the arcs defines the center  
of a sphere. A continuum of spheres is defined and the 
ex t rema and mean positions of the spheres are indi- 
cated in Fig. 1 for the l imiting wavelengths.  To ac- 
count for the mosaic spread the point  P is replaced 
by a spherical cap of d iameter  M. The intersection 
of the cap with the horizontal  plane is indicated in 
Fig. 1 by  a short  heavy  arc of length M. The crystal  
is ro ta ted  counterclockwise during an integration.  The 
measurement  s ta r t s  when M first  touches the sphere of 
radius 2 ~  oriented a t  - (C + S)/2, forming the vector 1. 
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Fig. 1. Rep re sen t a t i on  in reciprocal  space of the  physical  
in terac t ion  be tween  an X - r a y  spectral  d is t r ibut ion  f rom 
a finite-sized source and  a real crys ta l  on ro ta t ion  through 
the  reflecting posit ion.  

The measurement ends when M last touches the sphere 
of radius ~t~ -1 oriented at +(C+S)/2, forming the 
vector 2. Quite clearly the crystal must  be rotated 
through the angle A 0 + S +  C + M in the course of 
the integration. 

To find the minimum aperture widths that  will 
accept all the Bragg reflected rays for either the o~ 
or 20 scans consider Fig. 2. $1 represents the center of 

s, 

Fig. 2. Disp lacement  of the  origin of a d i f f rac ted  b e a m  vec to r  
arising f rom combined  size effect  of source and crystal .  

a sphere of radius ]~-1 and it also represents the center 
of the spectrometer circle. Let vector 1 represent Bragg 
reflection from a sphere of radius Ai -1 oriented at 
- ( C  + S)/2. If this ray had originated at the center of 
the crystal it  would intercept the spectrometer circle 
at the angle 2 0 1 - ( C + S ) / 2  as indicated by vector 2. 
However, the sphere oriented at - ( C +  S)/2 is defined 
by a vector describing an incident ray that  passes 
from - S / 2  on the source to +C/2 on the crystal. 
Therefore the origin of the diffracted ray is at a 
point C/2 off the center of the spectrometer. As 
indicated by vector 3 the diffracted ray intercepts the 
spectrometer circle at a lower angle than vector 2. 
Thus to accept the interaction represented by vector 1 
the detector aperture must be able to accept a ray 
which intercepts the spectrometer circle at 

201 - (C + s ) / 2 -  (C/2) cos [201- (c + s)/2] 
~_ 201 - S / 2  - (C/2)(1 + cos 201) 

= 2 0 1 -  S / 2  - C cos 2 01. 

In the 20 scan the integration starts with the detector 
centered at 201-  (S+ C +  M), diffracted ray at 
2 0 1 - S / 2 - C  cos 2 01, and ends with the detector at 
20~ + S + C + M, diffracted ray at 202 + S/2 + C cos 2 02. 
The detector aperture must have a width from the 
center of ( 2 0 1 - S / 2 - C  cos~ 01)-[201-(S+C+M)]  
on the high angle side and a width from the center of 
(202+S+C+M)-(2Oe+S/2+Ccos  e02) on the low 
angle side. The sum of the two widths is 

Th = Sh + Ch(sin 2 01 + sin e 02) + 2M 

_~ S~ + 2Ch sin 2 00 + 2M (1) 

where we have added the subscript h to indicate that  
we are dealing with horizontal dimensions, and 01 
and 02 are replaced by 00 the Bragg angle of the peak 
intensity at the center of the wavelength band. 

In  the w scan the detector is centered at 200 through- 
out the integration. The detector aperture must have 
a width from center of (202 + S/2 + C cos 2 02) - 200 on 
the high angle side and a width from center of 
200-  (201 + S/2 + C cos e 01) on the low angle side. The 
sum of the two widths is 

Th = 202-- 201 + S + C(cos 2 01 + cos 2 02) 

~_ A20 + Sh + 2Ch cos2 00 (2) 

It  should be noted in passing that  there are several 
ways of treating the effect of crystal size as it enters 
into equations (1) and (2) (Furnas, 1957; Burbank, 
1962; Ladell & Spielberg, 1963; Alexander & Smith, 
1964).* They differ as to the degree of geometric ap- 
proximation that  is used to define the origin point of 
a diffracted beam vector. They all agree on several 
points : 

* Note added in  proo f . - -  I t  should be  n o t e d  t h a t  the  
crys ta l  size effect  in equa t ions  (1) and (2) is ident ical  wi th  
t ha t  der ived  b y  Alexander  & Smi th  (1962) in thei r  first  
paper .  
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1. For the 20 scan the effect is zero at 0 = 0  ° and 
has a maximum of 2C at 0 = 90 °. 

2. For the co scan the effect has a maximum of 2C 
at 0 = 0  ° and is zero at 0=90  ° . 

3. At 0 =45 ° the effect is identical for either scan. 

For all practical purposes the differences that  remain 
are of li t t le consequence. 

The minimum aperture height that  will accept all 
the Bragg reflected rays for either the w or 20 scan is 
apparent upon consideration of the third dimension 
in Fig. 1, normal to the plane of the paper. The sheaf 
of incident beam vectors has an angular divergence 
of S,+C~ in the vertical direction and the spherical 
cap of the mosaic spread has a height M. Thc neces- 
sary aperturc is 

Tv = Sv + Cv + M .  (3) 

It  is a curious consequence of the natural  spectral 
distribution of an X-ray emission line that  the deft- 
nition of the quanti ty zJ20 is entirely arbitrary unless 
the spectral distribution is defined by balanced filters. 
It is well known that  the shape of the distribution 
approximates that  of a Cauchy distribution (Ladell, 
Parrish & Taylor, 1959). Furnas has used the separa- 
tion of the Ka~-Ka2 doublet plus the widths at half 
maximum intensi ty of the Kal  and K~.  lines to define 
/120. This will include 85% of the area under the 
calculated Cauchy distribution of a doublet. Alexan- 
der & Smith have suggested using the separation of 
the doublet plus 2.5 times the widths at half maximum 
of the lines. The writer has used the separation of the 
doublet plus 3"15 times the widths at half maximum 
of the lines for comparative computations of minimum 
apertures. This includes 95% of the area under the 
calculated Cauchy distribution. Once A20 is defined 
the scanning ranges and minimum apertures should 
consistently conform to the definition or a variable 
scale factor will enter into the results*. 

If the balanced filter technique is used A 20 is defined 
by the difference in wavelength of the absorption 
edges of the filters. An advantage of the technique is 
that  it can be used with the 20 scan for a direct deter- 
mination of the mosaic spread. Equations (1) and (3) 
show that  this quanti ty is needed for all techniques. 
Recall that  with balanced filters a reflection is always 
measured as a pair of curves. The curves diverge at 
the point where any wavelength in the pass band 

can enter the detector. The curves converge again at 
the point where no wavelength in the pass band can 

* Note added July 15, 1963, in reply to point raised by referee. 
In  this pa r ag raph  and  subsequen t ly  we speak of 4 2 0  being 
def ined by  a f rac t ion  of a Cauchy  dis t r ibut ion.  This is a 
s implif icat ion for convenience.  I t  is no t  implied t h a t  there  
is a 1 to 1 cor respondence  be tween  an area  unde r  a Cauchy  
d i s t r ibu t ion  and  an area  unde r  a ref lect ion peak.  The  cor- 
respondence  will v a r y  f rom ref lect ion to ref lect ion because 
of the  convolu t ive  n a t u r e  of an in tens i ty  peak.  There  is 
no th ing  in this pa r ag raph  t h a t  tells how one can expe r imen ta l ly  
confo rm to the def ini t ion of 4 2 0  if ba lanced  filters are no t  
used. 

enter the detector. From Fig. 1 it is obvious that  
the curves first diverge when the detector is at 
2 0 1 - ( S + C + M ) ,  and converge again when the de- 
tector is at 202-}-(S+ C-t-M). The positions of 01 and 
02 are known from the peak position and a direct 
measure of S + C + M is obtained. The method is best 
applied to a strong reflection at low Bragg angle 
where the Lorentz polarization effect is large, disper- 
sion is small, and the divergence or convergence of 
the curves is most visible. 

Equations (1), (2) and (3) provide the simplest 
comparison of the w and 20 scans. In the 20 scan the 
horizontal dimension of the detector aperture is inde- 
pendent of dispersion, but does depend on the mosaic 
spread, and has a definite upper l imit  for a given X-ray 
source and crystal. For a zero level co scan the horizon- 
tal aperture is independent of mosaic spread, but does 
depend on dispersion and consequently has no upper 
limit. In both scans the vertical aperture depends on 
the mosaic spread. The simplest practical consequence 
is that  a single aperture may be adequate for 20 scans 
but a series of apertures may be l equh'ed for the eJ 
scan. A small aperture area is desirable for several 
reasons. A small aperture will collect less unwanted 
scattering from all sources, such as parasitic scattering, 
Compton scattering, etc. Most of the contribution of 
unwanted scattering to an intensity measurement can 
be eliminated by proper background corrections. The 
principal disadvantage is a reduction of the signal to 
noise ratio with a consequent increase in the error of 
counting statistics and in the minimum observable 
intensity. 

A more fundamental  reason for minimizing aperture 
areas is related to an inherent l imitation in all intensity 
measurements. The effect of thermal diffuse scattering 
is to produce a peak coincident with the Bragg peak, 
which tails off slowly at the sides. Under ideal condi- 
tions a measured intensity will consist of the true 
integrated intensity plus some contribution from 
TDS. Nilsson (1957) has shown that  some of the 
published measurements on potassium chloride and 
sodium chloride may be in error by 20 to 30% from 
TDS. As the volume of reciprocal space from which 
diffraction can be detected at a given moment is 
reduced, the amount of TDS that  will be incorporated 
in an integration is reduced. Therefore the proper way 
to compare the effects of aperture requirements on 

intensities would appear to be in terms of illuminated 
volumes in reciprocal space (by definition an illumin- 
ated volume is the volume of reciprocal space from 
which diffraction can be detected). 

To obtain an estimate of the i l luminated volume 
consider Fig. 3. The origin of reciprocal space is at O. 
SoO represents an incident beam vector s0)~ -1 passing 
from the center of the source to the center of the 
crystal. SoTo represents a diffracted beam vector s), -1 
passing from the center of the crystal to the center 
of the detector. OTo therefore represents a diffraction 
vector ( ( s - s0 )2  -1 and the point To is an i l luminated 
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Fig. 3. I l lumina ted  vo lume  in reciprocal  space fo rmed  b y  
d i f f rac ted  b e a m  vec to r  sheaves  originat ing a t  every  po in t  
in inc ident  b e a m  vec to r  sheaf. 

point in reciprocal space. An array of all possible 
illuminated points will sweep out a volume, the il- 
luminated volume for the wavelength considered. Let 
the maximum horizontal and vertical angular dimen- 
sions of crystal, source, and detector be CA, Cv, Sa, 
Sv, Ta and Tv. Then the incident beam is represented 
by a sheaf of s02 -1 vectors which converge at O. The 
base of the sheaf has the linear dimensions (CA ÷ Sa)~. -1 
by (Cv ÷ Sv)A -1. All the diffracted rays will be accepted 
by the detector which are defined by a sheaf of s)~ -1 
vectors of angular dimensions (CA ÷ Ta) by (Cv + Tv) 
which diverge from the starting point of any s02 -1 
vector. In Fig. 3 a single sheaf of s). -1 vectors is shown 
diverging from the point So. The base of the sheaf 
has the linear dimensions (CA + Ta)2. -z by (Cv + Tv)). -1. 
Now let a sheaf of s/t -1 vectors originate at every 
starting point in the s0/t -1 sheaf. An evelope of s). -1 
sheaves results which defines the illuminated volume 
illustrated in Fig. 3. This quantity is related to the 
dimensions of the experiment by the expression 

V=).-8(2C,,+Sv+Tv)(Oa+Sa)(Ca+Ta) sin20 (4) 

where Ta and Tv are given by equations (1), (2) and (3). 
The prismatic parallelogram is an excellent approxi- 
mation even for circular apertures and a variety of 
crystal shapes as long as CA, Cv, Ta and T~ refer to 
maximum dimensions in the horizontal and vertical 
directions. The prismatic parallelogram will always 
enclose any volume that  might be defined by a higher 
approximation. I t  is worth noting that  the spherical 
crystal is the only shape that  gives constant values of 
CA and Cv for every reflection. 

When co and 20 scans are compared by the criteria 
of minimum illuminated volume for a variety of ex- 
perimental conditions (including values of M up to 
0"5 ° ) several conclusions emerge. When using balanced 
filters the 20 scan is always indicated. When /120 is 
defined by some fraction of the Cauchy distribution 

the 20 scan is always indicated at sufficiently high 
Bragg angles but at lower angles the co scan is indi- 
cated if M is large, the 20 scan if M is small. In actual 
practice the detector apertures will rarely be as small 
as the minimum acceptable values of equations (1), 
(2) and (3), except for the co scan with balanced filters 
or at very high angles without balanced filters. There- 
fore, in general, one will not work with the minimum 
illuminated volume. Under these circumstances it is 
worth while to consider the influence of choice of 
radiation on illuminated volume. For the portion of 
reciprocal space that  is accessible to both Cu and Mo 
radiation the 20 scan will require an illuminated 
volume with Mo that  runs from 5 to 10 times as large 
as with Cu. For the w scan with balanced filters Mo 
requires about 1.5 to 2 times the illuminated volume 
for Cu. For the co scan with A20 equivalent to 95% 
of a Cauchy distribution Mo requires 3.5 to 4.5 times 
the illuminated volume for Cu. A longer wavelength 
is clearly advantageous if other factors such as anom- 
alous dispersion do not dictate otherwise. 

In comparing co and 20 scans it is commonly said 
that  in the co scan a reciprocal lattice point is scanned 
in a tangential direction while in a 20 scan a recip- 
rocal lattice point is scanned in a radial direction. As 
a corollary to this it is further said that  one scans 
along the Laue streak in the 20 scan and across the 
Laue streak in the co scan. I t  is often forgotten that  
the first statement applies only to a very special situa- 
tion where the incident beam is absolutely parallel, 
the source contains only one wavelength, i.e. the 
spectral distribution has the form of a delta function, 
the sample is a point crystal with no mosaic spread, 
and the detector has an infinitely narrow aperture. 

In any real case none of these restrictions will apply; 
the physical interaction which should be included in 
an integrated intensity measurement occurs when a 
properly oriented crystal is rotated by a sufficient 
amount through the reflecting position. This physical 
interaction is dependent only on rotating the crystal, 
as shown in Fig. 1. I t  is in no way dependent on de- 
tector motion, detector apertures, or even whether a 
detector is present at all. If a detector is present, with 
the correct apertures and motion for the scan involved, 
an identical signal will be obtained for either the to 
or 20 scan. The unwanted radiation or noise that  is 
included with the signal will generally be different for 
the two scans. In a valid co scan exactly the same 
peak shape and Laue streak will be seen on the inten- 
sity curve as in the 20 scan. The Laue streak will be 
of limited length only because of the finite aperture. 
The over-all effect is that  the peak comes down to a 
Laue streak which appears like a pair of shoulders, 
and these drop down to a residual background. An 
co scan curve is thus characterized by three regions. 
In the central region all Bragg reflected radiation 
from the crystal is accepted. The intermediate region 
is a transition region. I t  begins with all Bragg reflected 
radiation being accepted and ends with none being 

A C 1 7 ~ 2 9  
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accepted. In the outer region no Bragg reflected radia- 
tion is accepted from the crystal. If an inadequate 
aperture is used with the co scan the transition region 
will be lost in the sides of the peak. For all techniques 
except balanced filters the proper background level 
occurs in the central region. If the minimum aperture 
equation (2) is used with balanced filters the limits of 
the pass band will occur within the transition region 
(because of the convolutive nature of an intensity 
curve). With a sufficiently large aperture the limits 
of the pass band will occur in the central region. Gross 
errors will result with any technique if a background 
level is taken in the outer region. 

The ~o and 20 scans are compared in Fig. 4 for the 
special case of parallel radiation incident on a point 
crystal with no mosaic spread. The spectral distribu- 
tion to be included in the integration is defined on 
the short wavelength side by a sphere of radius ~t~ -I 
centered at $1, on the long wavelength side by a sphere 
of radius ~t~ -1 centered at S~. For the 20 scan an in- 
finitely narrow aperture will define an illuminated 
line which extends along the vector OP from 2~t~ -1 sin 0 
to 2;t~-lsin 0. As the scan proceeds from OP at 
90°+ 01 to 90°+ 02 the illuminated line moves radially 
along OP from the initial limits 2~21  s i n  01, 2/~1-1 sin 01 
to the final limits 2~E 1 sin 02, 2~t~ -1 sin 02. For the o~ 
scan the detector aperture must extend from 201 to 
202 to detect the desired radiation. An illuminated 
area is defined which is bounded by the initial and 
final illuminated lines of the 20 scan and by two 
circular arcs, one extending from 2~-lsin01 to 
2 ~  -1 s i l l  02, the other from 2~t~ 1 sin 01 to 2~t~ -1 sin 02. 
As the scan proceeds the illuminated area does indeed 

o 

Fig.  4. Dif f rac t ion  of a real spectral  d is t r ibut ion  f rom a po in t  
source b y  a non-mosaic ,  poin t  crystal .  20 scan wi th  po in t  
de tec to r  defines i l luminated line along OP with  radial  
mot ion,  o) scan defines i l luminated  area  wi th  tangent ia l  
mot ion.  The area a lways  contains  the  i l luminated line of 
the  20 scan. Const ruct ion  applies to real source, crystal ,  
and  de tec to r  upon  replacing each i l luminated poin t  b y  an 
i l luminated volume.  

move tangentially to the vector OP. Note, however, 
that  the illuminated area always includes an illumi- 
nated line along OP which is identical with the illu- 
minated line of the 20 scan. 

Strictly speaking, Fig. 4 applies only to the case of 
balanced filters. The difference between two scans is 
taken. What remains is the spectral distribution within 
the pass band which has definite limits defining 21 
and 2~. For other techniques the length of an illu- 
minated line is defined by the voltage on the X-ray 
tube on the short wavelength side, and by the trans- 
parency of all windows in the system and the sensi- 
t ivity of the detector on the long wavelength side. 

When one removes the special conditions of Fig. 4 
and considers the interaction between a source of 
finite size and a real crystal, only one change is nec- 
essary. Each illuminated point in Fig. 4 is replaced by 
an illuminated volume as defined by equation (4). 

Upper  level co scans with equi-inclination 
Weissenberg geomet ry  

Fig. 5 is a schematic illustration in perspective of the 
equi-inclination Weissenberg geometry. To preserve 
clarity no spheres of reflection are drawn in. A per- 
fectly parallel incident beam is considered and a point 
crystal with no mosaic spread. 0 is the origin of 
reciprocal space, 00 '  is the crystal rotation axis. The 
incident beam direction is parallel to the line $10. 
The spectral distribution is defined on the short wave- 
length side by a sphere of radius /~-1 whose center is 
at $1, on the long wavelength side by a sphere of 
radius X21 whose center is at $2. The wavelength of 
peak intensity is ;to. As a crystal is rotated a reciprocal 
lattice point P moves along the path P1PoP2. In 
standard Weissenberg terminology RSO is the angle ~, 
QSP is the angle v, RSQ is the angle Y, and OSP is 

Po h 
P2 

Fig. 5. Diff ract ion with equi- incl inat ion Weissenberg  geome t ry  
of a real spectral  d is t r ibut ion  from a poin t  source b y  a 
non-mosaic ,  poin t  crystal .  To preserve c lar i ty  no spheres 
of reflection are depicted.  
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the angle 20. At P0 the equi-inclination condition 
holds and the incident and diffracted beams are equally 
inclined to the rotation axis. The inclination of the 
incident beam is constant for all wavelengths, but 
the diffracted beam becomes more and more inclined 
from S~P1 through $2P2. 

I t  is quite possible to discuss the spectral dispersion 
A20 in terms of the instrumental components Av 
and A Y. However, a more penetrating analysis results 
if attention is focused on the diffraction plane defined 
by the incident and diffracted beam vectors SO and 
SP. The intersection of the diffraction plane with 
the sphere of reflection defines a great circle for a 
given wavelength. On the zero level the great circle 
is horizontal and in Fig. 5 it would appear edge on 
along the line SO. For an upper level a great circle 
centered at S will pass through the points 0 and P. 
The upper level great circle is inclined to the zero 
level great circle with an intersection along the line 
SO, i.e. the circle has been rotated around the line SO. 
Let the amount of rotation around the incident beam 
vector be designated by the angle a. This quantity is 
fundamental to upper level recording and it is essen- 
tial to know how it varies as a function of wavelength 
and reciprocal lattice coordinates. 

In Fig. 6 the equi-inclination geometry is reoriented 
so that  the prime reference direction is the incident 
beam vector SO. Three orthogonal projections are 
shown. In each case the outer full circle is the projec- 
tion of a sphere of radius 2 -~. A reciprocal lattice 
point P is defined by axial and radial cylindrical recip- 
rocal lattice coordinates ~ and ~. In Fig. 6(c) the rota- 
tion axis 00 '  and the axial coordinate ¢ lie in the 

pr 

o 
o 

Fig. 6. Equi-inclination geometry. Construction for expressing 
the inclination, a, of the plane of diffraction as a function 
of wavelength and the reciprocal lattice coordinates of 
a point, P. 

plane of the figure, but ~ does not. Only components 
of 00 ' ,  ~ and ~ appear in Fig. 6(a) and (b). In Fig. 
6(a) the point P intersects the sphere in the great 
circle defined by S, O, P which is inclined to the plane 
of the figure by the angle a. If this great circle is 
rotated about the axis SO by the angle o¢ it will then 
lie in the plane of the figure and P will move to P'. 
The angle O S P = O S P ' = 2 0 .  The motion of P to P' 
lies on a small circle which is perpendicular to the 
figure. The center of the small circle lies on the line 
SO and is located (cos 20)/2 to the right of S. The 
radius of the small circle is (sin 2 0)/2. In Fig. 6(b) the 
preceding construction is viewed along the direction 
OS. The horizontal and inclined great circles appear 
edge on as lines through OP' and OP. The small circle 
through PP'  is parallel to the plane of the figure. The 
height of P above the horizontal great circle is given 
by sin a(sin 20)/2. In Fig. 6(c) the construction is 
viewed along the direction in the horizontal great 
circle which is perpendicular to SO. The projection of 

is the line PO' which is perpendicular to 00 ' .  The 
horizontal and vertical components of 00 '  are given 
by $ sin/~ and $ cos ,u. The horizontal component of 
PO' is given by 

PO' cos # = S O -  SP'  - ~ sin tt 
= 2 - 1 -  (cos 20)/2-- ~ sin/~ . 

So 
PO'= (1 - cos 20 - ~2 sin #)/2 cos/~ . 

The vertical component of PO' is given by 

PO' sin/t =tan/~(1 - cos 20 - ~2 sin/~)/2. 

The height of P above the horizontal great circle is 
thus given by 

cos # - t a n  #(1 - c o s  2 0 -  ~2 sin #) /2 .  

Equating the two expressions for the height of P 
above the horizontal circle 

sin a = [$2 cos # - t a n / t ( 1  - cos 2 0 -  ~2 sin #)]/sin 20.  
(5) 

Let 20 be the wavelength of peak intensity in the 
spectral distribution. The equi-inelination setting is 
determined by ~ and 2o so that  

sin # = ~20/2 
cos/z---- ½V(4-- ¢0"2o) 

tan # =  ~20/~/(4-- ~2;t~). (6) 

The Bragg angle depends upon $, ~ and 2 which may 
be any wavelength in the spectral distribution so that  

sin 20= ½ V{(~ ~2e + ~e22)( 4 -  $ 222- ~e2e)} 
1 -- cos 20 = ~-($22~ + ~e29) . (7) 

Substituting equations (6) and (7) into equation (5) 

$2 (4 -  ¢2220- ~222o) 
sin ~ = 1/{(4- ; ~ ) ( ~ 2 +  ~222)(4- $ ~ -  ~2~)}" (s) 
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When A= ~to equation (8) reduces to 

sin ~ = t a n  ~t ctn 00. (9) 

From equation (8) the behavior of ~ can be detailed. 
In  Table 1 the variation of ~ as a function of ~2o, 
~20 is presented for values out to the limiting sphere. 
This is the value of ~ that  will pertain at the peak 
intensi ty  of a reflection. The value of c¢ changes 
throughout a reflection and as a point P moves from 
P1 to P2 in Fig. 5 the value of c¢ passes through a 
min imum at P0. I t  is essential to know the extent of 
this variation. In  Table 2 the variation of c~ between 
Me Kc~l and the Zr and Y K edges is presented, and 
in Table 3 the variation of c~ between Cu K~I and the 
Ni and Co K edges. The spectral dispersion of a 
balanced filter pass band can be considered as the 
upper l imit  of dispersion that  will be encountered in 
practice. Therefore Tables 2 and 3 indicate that  for 
all practical purposes ~ can be considered constant 

throughout an integration unless a reciprocal latt ice 
point is very close to the l imiting sphere or has a value 
of ~20 which exceeds the l imitations of any  real 
apparatus. 

The preceding conclusion permits a tremendous 
simplification in discussing the detector aperture 
requirements for the upper level co scan. The geometry 
of Fig. 1 can be applied directly, just  remembering 
that  the frame of reference has been rotated by c~ 
around the mean incident beam direction. If the crystal 
is restricted to a spherical shape and the detector is 
positioned so that  its horizontal and vertical aperture 
dimensions are parallel and perpendicular to the in- 
clined diffraction plane, then equations (2) and (3) can 
be written 

T~ = A 20 + S~ cos c¢ + S ,  s in c~ + 2C cos 2 0 

T ~ - S h  sin c~+S~ cos c¢+C+M (10) 

remembering that  the image of the source is rotated 

Table 1. The inclination, ~, of the plane of diffraction as a function of ~2o, ~2 o for equi-inclination Weissenberg 
geometry, where 20 is the wavelength of peak intensity in the spectral distribution 

~ "~o -> 
~20 0.0 0.2 0-4 0.6 0"8 1.0 1.2 1.4 1.6 1-8 2.0 

0.0 - -  0"00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0"00 0-00 
0-2 90.00 44.72 25.98 17.55 12.83 9.77 7.53 5.77 4.23 2.70 
0.4 90"00 62.85 43.80 31.87 24.10 18.63 14.48 11.08 8.05 4.92 
0.6 90.00 70.63 54.45 42.17 33.00 25-98 20.35 15.52 11.03 6-02 
0.8 90.00 74.65 60.80 49.10 39.50 31.57 24.80 18-68 12-60 4-40 
1-0 90.00 76.92 64.60 53.55 43.83 35-27 27.50 20.02 11.72 
1-2 90.00 78-15 66.72 56.02 46.10 36.85 27.88 18.37 0-00 
1-4 90.00 78.58 67.38 56.52 46-00 35.52 24.32 8.05 
1.6 90.00 78.07 66.15 54-18 41.82 27-95 0.00 
1.8 90.00 75-33 60.15 43.50 21.30 
2"0 90.00 

Table 2. Variation of ~ between Me K~ and Zr and Y K edges* 

~ o  0-2 0.4 0"6 0.8 1.0 1.2 1.4 1-6 

0.2 0"00 0"00 0"00 0"00 0"00 0"00 0"00 0"00 
0.00 0"00 0"00 0.00 0"00 0"00 0-00 0"00 

0-4 0-00 0.00 0"01 0"00 0"00 0-00 0"00 0"02 
0.00 0.02 0"01 0.00 0.00 0.00 0.02 0.02 

0"6 0-02 0-00 0"00 0"02 0"02 0"00 O'O1 0"04 
0.02 0.00 0.00 0.02 0.02 0.02 0.01 0-05 

0"8 0.02 0"00 0.02 0"02 0.01 0.02 0"04 0"08 
0-03 0"02 0"02 0"02 0.01 0"02 0"04 0"13 

1.0 0.02 0.03 0.02 0.04 0.03 0.03 0.06 0.21 
0.05 0.05 0.03 0.04 0.03 0.05 0.10 0.60 

1.2 0.08 0"05 0.05 0.05 0"05 0.10 0.20 5.03 
0.10 0.06 0.05 0.07 0.07 0.14 0-40 t 

1-4 0.20 0.10 0"10 0.10 0.15 0.26 1.80 
0"24 0"14 0.11 0"13 0"21 0"66 t 

1"6 0"48 0"30 0.25 0"30 0"57 8"97 
0-65 0"40 0"37 0"51 1.58 t 

1.8 1"69 1'07 1.18 3"03 
3-25 2"23 3.90 t 

* The first  e n t r y  refers to  Zr, the  second to Y. 
t Bragg reflectio i canno t  occur a t  these points  for ~ = Y K edge. 

1-8 

0.02 
0-03 

0-05 
0-10 

0.13 
0.41 

0.60 
¢ 
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Table 3. Variation of ~ between Cu Koq and Ni and Co K edges* 

~t o --> 
~0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

0.2 0.00 0.00 0.00 0"00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 

0.4 0.00 0.02 0.01 0.00 0-00 0.00 0.02 0.02 
0.00 0.02 0.01 0.00 0.00 0.02 0.04 0.07 

0-6 0.04 0.00 0.00 0.02 0.02 0.02 0.03 0.05 
0.04 0.02 0"01 0.02 0"04 0"03 0-06 0.15 

0.8 0.03 0.02 0.02 0.02 0.03 0.02 0.05 0.12 
0.07 0"03 0"03 0"05 0"05 0.07 0.14 0.43 

1.0 0.05 0.05 0.03 0-04 0.03 0"05 0.10 0.28 
0.13 0.08 0.07 0.09 0"10 0-13 0"33 3.43 

1.2 0.12 0"06 0.05 0.07 0"08 0.12 0.26 5.50 
0.18 0.16 0.15 0.17 0-22 0.39 1-58 ~f 

1"4 0.27 0.15 0.13 0.13 0.20 0.36 2.20 
0.69 0.39 0.35 0.40 0.65 2.15 ~f 

1.6 0.66 0.40 0.35 0.41 0.77 9.82 
2.01 1-17 1.14 1.73 9.17 t 

1.8 2.40 1.45 1.60 3.80 
t 9.73 t t 

* The first entry refers to El, the second to Co. 
t Bragg reflection cannot occur at these points for 2 = Co K edge. 

1.8 

0.03 
0.12 

0.06 
0.41 

0.18 
3.05 

0.75 
t 

by  ¢¢ a round the  inc ident  beam direction, and  using 
the  superscript  c~ to indicate  the  or ien ta t ion  of the  
detector .  

The apertures  of equat ion  (10) are somewhat  larger 
t h a n  those of equat ions  (2) and  (3) because of the  
cont r ibu t ion  of source size. Otherwise the  funct ional  
dependence is the  same. To a f irst  approx imat ion  
the  detector  aper ture  required for a zero level o~ scan 
will  suffice for an  upper  level scan provided the  de- 
t ec to r  is r o t a t ed  a round  the  mean  diffracted beam 
direct ion by  such an  angle t h a t  the  hor izonta l  and  
ver t ica l  edges of the  aper ture  are paral le l  and  per- 
pendicular ,  repsectively,  to  the  incl ined diffract ion 
plane. Call this  angle ft. I t  tu rns  out  t h a t  # has the  
same magni tude  as ~, bu t  this  is no t  obvious im- 
mediate ly .  One way of demons t ra t ing  t h a t  # =  ~ is 
presented in the  Appendix.  

If  the  detector  is not  ro ta ted  a round the  diffracted 
beam direct ion the  min imum aper ture  requirements  
are 

T o = T~ cos ~ + T~' sin 
0 _ _  o¢ Tv - T~ sin ~ + Tv cos c¢ 

since the  area enclosed by  the  un ro ta t ed  detector  aper- 
ture  mus t  enclose the  area of the  ro t a t ed  detector  
aperture.  I n  unfavorable  circumstances T o × T O m a y  
be an  order of magni tude  larger t h a n  T~ x T~. Note  
t h a t  T o and  T o are each dependent  on bo th  the  
mosaic spread and  the  spectral  dispersion. So far  as 
aper ture  requirements  are concerned the  zero level o) 
scan wi th  Euler ian-cradle  geometry  has dis t inct  ad- 
vantages  over equi- incl inat ion geometry.  

An analysis  similar  to  t h a t  presented here can be 
made  for any  type  of upper  level geometry.  An inves- 

t iga t ion  of normal  beam geomet ry  has shown t h a t  the  
funct ional  dependence of ~ on ~A and  ~2. is consider- 
ab ly  more complicated t h a n  for equi- incl inat ion geom- 
etry.  For  pract ica l  purposes i t  seems unl ike ly  t h a t  
serious considerat ion need be given any  upper  level 
geometry  except  the  equi- incl inat ion case. 

A P P E N D I X  

The equality of the angles  fl and ~ in the 
equi- incl inat ion case  

The incident  and  diffracted beam vectors define the  
plane of diffraction.  The intersect ion of the  plane of 
diffract ion wi th  the  sphere of reflection defines a 
great  circle. This circle is hor izontal  for a zero level 
but  is inclined by  the  angle ~ a round the  incident  
beam direct ion for an  upper  level. The incident  beam 
is inclined by the  angle # to the  horizontal  in the  equi- 
incl inat ion case. 

Let  the  angle fl be the  amoun t  by  which the  detec- 
tor  mus t  be ro ta ted  a round the  diffracted beam direc- 
t ion  so t h a t  the  hor izonta l  and  ver t ica l  edges of the  
detector  aper ture  are paral lel  and  perpendicular ,  res- 
pectively,  to the  plane of the  incl ined great  circle. 

Place a great  circle in the  xy plane wi th  i ts  center a t  
the  origin of a r ight  handed  cartesian coordinate  
system, and  define the  angle 20 as in :Fig. 7(a). Let  the  
great  circle be given a ro ta t ion  # a round the  x axis 
as in Fig. 7(b). Follow this  by  a ro ta t ion  c~ around the  
d iameter  which lies in the  yz plane as in Fig. 7(c). 
Then  the  equat ions of a poin t  on the  incl ined great  
circle in paramet r ic  form are given by  
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z z 

(~) 

Fig. 7. Equi-inclination geometry. Constructions for deter- 
mining the angle, fl, by which the detector must be rotated 
around the diffracted beam vector so that the horizontal 
and vertical edges of the detector aperture are parallel and 
perpendicular to the inclined plane of diffraction. 

x = - s i n  20 cos a 

y = cos 20 cos # + s in  20 s in  # s in  

z =  - c o s  20 s in  # + s i n  20 c o s #  s in  a (11) 

The  same po in t  also lies on the  smal l  circle t h a t  is 
t r a v e r s e d  b y  t h e  de tec to r  w h e n  i t  is a d j u s t e d  for t he  
i nc l ina t ion  angle /x .  L e t  the  smal l  circle be para l le l  to  
t h e  xy plane ,  w i t h  i t s  center  on  the  z axis  a t  a he igh t  
s in  # above  the  xy plane,  a n d  define t he  angle  T as 
in  Fig.  7(d). T h e n  t h e  equa t ions  of t he  po in t  on the  
smal l  circle in  p a r a m e t r i c  form are g iven  b y  

x = - s in  T cos # 

y = cos T cos # 

z = sin/~ (12) 

The  angle  be tween  the  t a n g e n t s  to  the  two circles a t  
the  poin ts  x, y, z is the  angle ft. Us ing  the  d i rec t ion  
cosines of the  two curves one ob ta ins  

COS ~ 
dx dx dy dy dz dz 

d2----O d---T + d20 -dT + d20 d T  
dx 2 dx 2 

\ d r /  ~dY] / 

= cos 20 cos T cos a + sin 20 s in  T cos/~ 

- c o s 2 O s i n  T s i n # s i n a .  (13) 

To show the  i d e n t i t y  of fl a n d  a recal l  t h a t  

s in  a = t a n  # c tn  0 (9) 

f rom which  i t  follows t h a t  

cos c~ = ~/(cos~/~ - cos 2 0)/cos # s in  0 .  (14) 

Also for equ i - inc l ina t ion  g e o m e t r y  

cos T/2 = cos 0/cos 

f rom which  i t  follows t h a t  

s in  T =  2 cos 0 V(cos2/~ - cos 2 0)/cos 2 ~u (15) 

cos T--  (2 cos 2 0 - cos 2 #)/cos 2/~. (16) 

W h e n  equa t ions  (9), (14), (15) and  (16) are s u b s t i t u t e d  
in  e q u a t i o n  (13) a long  wi th  

cos 20 = 2 cos 2 0 - 1  

s in  20 = 2 s in  0 cos 0 
one ob ta ins  

cos f l =  V(cos2/~-- cose 0)/cos # s in  0 = c o s  o~, 

or f l=~ .  

I am i n d e b t e d  to S. C. A b r a h a m s  for m a n y  s t imu-  
l a t i ng  discussions on m e t h o d s  of i n t e g r a t e d  i n t e n s i t y  
m e a s u r e m e n t .  
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